Detection and Estimation Algorithms in Massive MIMO Systems
نویسندگان
چکیده
This book chapter reviews signal detection and parameter estimation techniques for multiuser multiple-antenna wireless systems with a very large number of antennas, known as massive multi-input multi-output (MIMO) systems. We consider both centralized antenna systems (CAS) and distributed antenna systems (DAS) architectures in which a large number of antenna elements are employed and focus on the uplink of a mobile cellular system. In particular, we focus on receive processing techniques that include signal detection and parameter estimation problems and discuss the specific needs of massive MIMO systems. Simulation results illustrate the performance of detection and estimation algorithms under several scenarios of interest. Key problems are discussed and future trends in massive MIMO systems are pointed out.
منابع مشابه
Signal Detection and Parameter Estimation in Massive MIMO Systems
This book chapter reviews signal detection and parameter estimation techniques for multiuser multiple-antenna wireless systems with a very large number of antennas, known as massive multi-input multi-output (MIMO) systems. We consider both centralized antenna systems (CAS) and distributed antenna systems (DAS) architectures in which a large number of antenna elements are employed and focus on t...
متن کاملOptimal Non-coherent Data Detection for Massive SIMO Wireless Systems with General Constellations: A Polynomial Complexity Solution
Massive MIMO systems can greatly increase spectral and energy efficiency over traditional MIMO systems by exploiting large antenna arrays. However, increasing the number of antennas at the base station (BS) makes the uplink noncoherent data detection very challenging in massive MIMO systems. In this paper we consider the joint maximum likelihood (ML) channel estimation and data detection proble...
متن کاملSemi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملLimited Feedback Channel Estimation in Massive MIMO with Non-uniform Directional Dictionaries
Channel state information (CSI) at the base station (BS) is crucial to achieve beamforming and multiplexing gains in multiple-input multiple-output (MIMO) systems. State-of-the-art limited feedback schemes require feedback overhead that scales linearly with the number of BS antennas, which is prohibitive for 5G massive MIMO. This work proposes novel limited feedback algorithms that lift this bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1408.4853 شماره
صفحات -
تاریخ انتشار 2014